
INFORMS JOURNAL ON COMPUTING
Articles in Advance, pp. 1–18

http://pubsonline.informs.org/journal/ijoc ISSN 1091-9856 (print), ISSN 1526-5528 (online)

A Branch-Price-and-Cut Procedure for the Discrete Ordered
Median Problem
Samuel Deleplanque,a Martine Labbé,b Diego Ponce,c,d,e Justo Puertoc

a Ifsttar, COSYS, ESTAS, Université Lille Nord de France, 59000 Lille, France; bDépartament d’Informatique, Faculté des Sciences, Université
Libre de Bruxelles, 1050 Bruxelles, Belgium; c Instituto de Matemáticas de la Universidad de Sevilla (IMUS), 41012 Sevilla, Spain;
dDepartment of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada; eCentre
interuniversitaire de recherche sur les réseaux d’enterprise, la logistique et le transport (CIRRELT), Montreal, Quebec H3T 1J4, Canada
Contact: samuel.deleplanque@ifsttar.fr, http://orcid.org/0000-0003-4119-6006 (SD); mlabbe@ulb.ac.be,

http://orcid.org/0000-0001-7471-2308 (ML); dponce@us.es, http://orcid.org/0000-0003-3380-6601 (DP); puerto@us.es,
http://orcid.org/0000-0003-4079-8419 (JP)

Received: February 9, 2018
Revised: December 7, 2018; March 11, 2019
Accepted: June 2, 2019
Published Online in Articles in Advance:
January 7, 2020

https://doi.org/10.1287/ijoc.2019.0915

Copyright: © 2020 INFORMS

Abstract. The discrete ordered median problem (DOMP) is formulated as a set-partitioning
problem using an exponential number of variables. Each variable corresponds to a set of
demand points allocated to the same facility with the information of the sorting position of
their corresponding costs.Wedevelop a columngeneration approach to solve the continuous
relaxation of this model. Then we apply a branch-price-and-cut algorithm to solve small- to
large-sized instances of DOMP in competitive computational time.

Funding: This research was supported by Spanish/FEDER [Grant MTM2016-74983-C02-01-R]. The
research of the second and third authors was supported by the Interuniversity Attraction Poles
Programme initiated by the Belgian Science Policy Office.

History: Accepted by Andrea Lodi, Area Editor for Design & Analysis of Algorithms—Discrete.

Keywords: discrete optimization • location theory • branch and price • ordered median problems

1. Introduction
Broadly speaking, a facility-location problem consists
of locating one or several facilities to minimize an ob-
jective function of the assignment costs of clients to fa-
cilities. Median and center location problems constitute
the most popular ones. The ordered median location
problem is a flexible model that provides a common
framework to cast most popular location problems. The
objective function tobeminimized isaweighted function
of the allocation costs in which the weights are assigned
to the ordered values of the costs rather than to specific
costs. Ordered median location problems were first in-
troduced in networks and continuous spaces by Nickel
and Puerto (1999) and Puerto and Fernández (2000),
respectively. Later, they were extended to the discrete
setting by Nickel (2001) and Boland et al. (2006).

Given a set of clients and a set of candidate loca-
tions and assuming that the allocation costs of clients
to facilities are known, the discrete ordered median
problem (DOMP) consists of choosing p facility loca-
tions and assigning each client to a chosen facility with
the smallest allocation cost to minimize the ordered
weighted average of these costs. The ordered weighted
average sorts the allocation costs in a nondecreasing se-
quence and then it performs the scalar product of this so-
obtainedsortedcostvectorwithagivenvectorofweights.

DOMPhas beenwidely studied since the 1990s, and
there are a number of different formulations, solution

approaches, and applications available in the literature.
To cite a few, DOMP has been applied to discrete facility
location in Boland et al. (2006), Marı́n et al. (2009,
2010), Nickel (2001), Puerto (2008), and Puerto et al.
(2009); to location on networks in Nickel and Puerto
(1999); to hub network design problems in Puerto
et al. (2011, 2013, 2016); to determine values in co-
operative game theory in Perea and Puerto (2013); to
combinatorial optimization problems with ordering
in Fernández et al. (2013, 2014, 2017); and to voting
problems in Ponce et al. (2018), etc. The reader is re-
ferred to the monographs by Nickel and Puerto (2005)
and Puerto and Rodrı́guez-Chı́a (2015) for some other
applications.
There exist several valid formulations for DOMP

that exploit specific features of the problem, for in-
stance, free self-service, ties in the matrix of costs, or
null elements in the vector of weights (see, e.g., Boland
et al. (2006), Marı́n et al. (2009, 2010), Puerto et al.
(2013), Labbé et al. (2017), and the references therein).
In Labbé et al. (2017), a new formulation for DOMP
has beenproposedbased on a set-packing approach that
is valid for general cost coefficients. This formulation
gives rise to rather tight integrality gaps and was shown
to be reasonably efficient to solve medium-sized in-
stances when embedded in a branch-and-cut (B&C)
scheme. For general cost coefficients (with no ties), all
these formulations have a very large (cubic) number of

1

http://pubsonline.informs.org/journal/ijoc
mailto:samuel.deleplanque@ifsttar.fr
http://orcid.org/0000-0003-4119-6006
http://orcid.org/0000-0003-4119-6006
mailto:mlabbe@ulb.ac.be
http://orcid.org/0000-0001-7471-2308
http://orcid.org/0000-0001-7471-2308
mailto:dponce@us.es
http://orcid.org/0000-0003-3380-6601
http://orcid.org/0000-0003-3380-6601
mailto:puerto@us.es
http://orcid.org/0000-0003-4079-8419
http://orcid.org/0000-0003-4079-8419
https://doi.org/10.1287/ijoc.2019.0915

binary variables, and therefore, already for instances
with 100 clients, they fail to be loaded by the solvers.

In this paper, we explore a different paradigm for
solvingDOMPbased on column generation that avoids
considering explicitly all the variables of the problem.
Moreover, we introduce a new extended formulation
using an exponential number of variables that corre-
sponds to a set-partitioning model and provides even
better linear relaxation lower bounds. Each variable
represents a set of couples (client, position). In each
element of the partition, its clients are served by the
same facility, and their positions indicate the place
of their allocation costs in the sorted list of allocation
costs for the entire considered solution. To handle the
exponential number of variables, we use a column-
generation approach that is embedded in a branch-
price-and-cut (B&P&C) algorithm.

Branch-and-price algorithms to solve location prob-
lems have been proposed by du Merle and Vial (2002),
Lorena and Senne (2004), Senne et al. (2005), Ceselli
and Righini (2005), Avella et al. (2006), and Contreras
et al. (2011) to cite a few. In most cases, the considered
problem is the p-median although there are some
exceptions, for instance, Contreras et al. (2011) for
capacitated hub location or Doulabi et al. (2016) for a
different problem.

A branch-and-price approach has never been ap-
plied to DOMP, and even more, our approach based
on a set partition for couples is fully new. These two
facts open new avenues of research in the field of
location analysis. Therefore, the contributions of this
paper are twofold: (1) methodological, to propose a
new perspective in the resolution of DOMP based on
formulationswith an exponential number of variables
and to develop an efficient B&P&C algorithm to
handle them, and (2) numerical, to provide solutions
for large instances of DOMP.Moreover, in those cases
in which optimality of a solution cannot be certified,
our approach provides, at least, valid lower bounds
that can be used to measure the quality of feasible
solutions of DOMP given either by heuristic algorithms
(Domı́nguez-Marı́n et al. 2005, Stanimirovic et al.
2007, Puerto et al. 2014, Olender and Ogryczak 2018).

The remainder of this paper is organized as follows.
Notation, models, and algorithms are presented in
Section 2. Section 2.2 introduces a new set-partitioning
formulation for DOMP. This formulation uses an ex-
ponential number of variables inwhich each element of
the partition is a set of clients that are assigned to the
same facility together with their sorted positions. This
formulation is theoretically compared with another
valid formulation described in Section 2.1 and bor-
rowed from Labbé et al. (2017). Section 2.3 describes
the column generation algorithm that we have de-
signed to overcome the large number of variables in
the model. We prove that the pricing subproblem is

solvable efficiently in polynomial time by using an
ad hoc dynamic programming algorithm. We devote
Section 3 to the implementation details of our B&P&C
algorithm.Wedevelop aGRASPheuristic in Section 3.1
that is used to generate both a promising initial so-
lution and a pool of variables to initialize the column-
generation routine. We also develop a stabilization
routine based on Pessoa et al. (2010) that reduces
considerably the number of iterations of the column-
generation approach in Section 3.2. In addition, Sec-
tion 3.3 is devoted to an additional improvement,
namely a preprocessing. The next two sections, 3.4
and 3.5, present our branching strategies and some
families of valid inequalities that are added to the
branch-and-price algorithm. In the last section, namely
Section 4, we report on the final computational ex-
periments.We evaluate the performance of the B&P&C
algorithm and compare it to the compact formulation
in Section 2.1. The paper ends with some concluding
remarks.

2. Problem Definition and Formulations
Let I be a set of n points that, at the same time, rep-
resent clients and potential uncapacitated facility
locations, and let cij denote the cost for serving client
i’s demand from facility j.
Given a set J of p open facilities, let ci(J) represent

the cheapest cost for allocating client i to a facility in
J, that is, ci(J) :� minj∈J cij.
Now let us sort the costs ci(J), i ∈ I by nondecreasing

order of their values. The elements of the resulting
vector of ordered costs are denoted by c(k)(J) and
satisfy c(1)(J) ≤ · · · ≤ c(n)(J). We denote the set of all
possible positions 1, . . . ,n in this ordered vector by K.
Given the vector λ � (λk)k∈K satisfying λk ≥ 0, k ∈ K,

the objective function of DOMP is defined as

z(J) :� ∑
k∈K

λkc(k)(J). (1)

Recall that this objective function provides a very
general paradigm to encompass standard and new
location models. For instance, if λ1 � . . . � λn � 1,
we obtain the median objective; if λ1 � λ2 � . . . �
λn−1 � 0, λn � 1,we obtain the center objective; if λ1 �
λ2 � . . . � λn−1 � α, λn � 1, where α � [0, 1], we obtain
a convex combination of median and center objec-
tives (centdian), etc.
The p-facility discrete ordered median problem

looks for the subset J of p facilities to open tominimize
the ordered median function:

min
J⊆I:|J|�p

z(J). (DOMP)

Several formulations ofDOMPhave been proposed in
the literature using different types of variables. Among

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
2 INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS

them, we mention those based on a combination of the
p-median and permutation polytopes (Boland et al.
2006) or on covering approaches by using radius vari-
ables (Puerto 2008; Marı́n et al. 2009, 2010).

2.1. An Explicit Formulation for DOMP: The Weak
Order Constraints

In the following, we recall the weak order constraints
formulation, WOC, introduced in Labbé et al. (2017),
and that is the starting point for the developments pre-
sented in this paper. This formulation uses two types of
binary variables. Variable yj assumes value one if fa-
cility j ∈ I is open (i.e., j ∈ J) and zero otherwise.
Variable xkij is equal to one if client i ∈ I is allocated to
facility j ∈ I and the corresponding cost occupies
position k ∈ K in the allocation cost ranking (i.e., c(k)(J) �
cij). The choice of this formulation is motivated by its
good performance in terms of integrality gap (see
Labbé et al. (2017)). However, it requests important
memory space because it needsO(n3) binary variables,
which may become prohibitive for moderate n.

We denote the rank of the allocation cost cij by rij,
that is, rij � � if cij is the �th element in the list of
the costs cij for all i, j ∈ I, sorted by order of non-
decreasing values and for which ties are broken ar-
bitrarily. For the sake of readability, the reader is re-
ferred to Example 1 in Section 2.3. The formulation is
as follows:

(WOC)min
∑
i∈I

∑
j∈I

∑
k∈K

λkcijxkij (2)

s.t.
∑
j∈I

∑
k∈K

xkij � 1 i ∈ I (3)

∑
i∈I

∑
j∈I

xkij � 1 k ∈ K (4)

∑
k∈K

xkij ≤ yj i, j ∈ I (5)∑
j∈I

yj � p (6)

∑
i∈I

∑
j∈I

∑
i′∈I

∑
j′∈I:

ri′ j′ ≤rij

xki′j′ +
∑
i′∈I

∑
j′∈I:

ri′ j′≥rij

xk−1i′j′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≤ n2

k ∈ K, k �� 1 (7)

xkij, yj ∈ {0, 1} i, j ∈ I, k ∈ K. (8)

Bymeans of (3), we ensure that each location is served
by exactly one facility. In the same way, in each po-
sition there must be exactly one allocation cost (4).
Constraints (5) translate the fact that a client can
be allocated to a facility only if this facility is open
and that the allocation cost of a client to a facility can be
placed in at most one position. The equality constraint
(6) implies that there are exactly p open facilities.

Constraints (7), called weak order constraints, ensure
that, if client i is allocated to facility j and the corre-
sponding costs cij occupy the kth position in the cost
ranking of the solution, then, in the (k − 1)th position,
there must be a smaller allocation cost. This property
is enforced by the coefficients of each variable in the
inequality. In each constraint, there are two different
positions, k and k − 1 so that, by (4), only two variables
must take value one, and all the others are equal to
zero. If we do not take into account the variables as-
suming the value zero andwe assume that the variables
with value one for positions k and k − 1 correspond to
allocation pairs in sorted position s and t, respec-
tively, the inequality reduces to the following expres-
sion: (n2 − (s − 1))xk

isjs+ txk−1itjt ≤ n2,which is valid if and
only if t < s. Finally, the variables are binary, see (8).
WOC can be reinforced by adding the following

valid inequalities:

∑
i′∈I

∑
j′∈I:

ri′ j′ ≤rij

xki′j′ +
∑
i′∈I

∑
j′∈I:

ri′ j′ ≥rij

x k−1
i′j′ ≤1, i, j∈ I, k ∈ K, k �� 1. (9)

Observe that constraints (7) are the aggregation over
i, j ∈ I of inequalities (9). These inequalities are the so-
called strong order constraints; see Labbé et al. (2017)
for a detailed explanation.

2.2. A Set-Partitioning Formulation
From a linear programming relaxation point of view,
the preceding formulation is not the strongest one, but
it provides a good compromise between the number of
required constraints and the quality of its linear re-
laxation bound; see Labbé et al. (2017). Further, it al-
lows solving to optimality problems ofmoderate size.
One of its drawbacks is the use of a cubic number of
variables, which can be prohibitive for large n. A
second important problem of most known formula-
tions for DOMP is their high degree of symmetry in
case of allocation costs cij or weights (λk) with many
ties.
These reasons motivate the introduction of a new

formulation based on a different rationale. We ob-
serve that a solution for DOMP is a partition of the
clients togetherwith their positions in the sorted vector
of costs so that each subset of clients in the partition is
allocated to the same facility.
Let us consider sets of couples (i, k), where the first

component refers to a client i and the second to a po-
sition k, namely S �{(i, k) : for some i ∈ I, k ∈ K}. Fur-
ther, we denote by 3(I × K) the family of all sets S for
which all first (respectively, second) coordinates of its
couples are different.
Associated with each set S and facility j, we define a

variable y j
S equal to one if the set S is part of a feasible

solution ((i, k) ∈ S iff xkij � 1) and zero otherwise.

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS 3

Let S be the set of couples whose first coordinate
corresponds to the clients allocated to a given facility j
of a feasible solution. The positions of these clients in
the solution, that is, the second coordinates of couples
in S must be compatible with the ranking of all the
allocation costs involved in the solution. Hence, they
must, in particular, be compatible with the ranking of
the costs cij of the clients i allocated to j. This implies
that, for facility j ∈ J, we only need to consider subsets
of couples S belonging to6(j) � {S ∈ 3(I × K) : cij ≤ ci′j
for all (i, k), (i′, k′) ∈ S, and k < k′}.

Because, in any feasible solution, each client imust
be allocated to a unique facility j and its allocation cost
must occupy a unique position k in the sorted list, the
following relationship holds:

xkij �
∑

S∈6(j):(i,k)∈S
yjS, i, j ∈ I, k ∈ K. (10)

Next, we can evaluate the cost c jS induced by the set S
provided that its clients are assigned to facility j in a
feasible solution:

cjS � ∑
(i,k)∈S

λkcij. (11)

To simplify the presentation in the following we de-
note by (i, ·) any couplewhosefirst entry is i regardless
of the value of the second entry. Analogously, (·, k)
denotes any couplewhose second entry is k regardless
of the value of the first entry.

The following valid formulation uses variables yj
S

and constitutes our master problem (MP):

(MP) min
∑
j∈I

∑
S∈6(j)

cjSy
j
S (12)

s.t.
∑
j∈I

∑
S∈6(j):
(i,·)∈S

yjS � 1 i ∈ I (13)

∑
j∈I

∑
S∈6(j):
(·,k)∈S

yjS � 1 k ∈ K (14)

∑
S∈6(j)

yjS ≤ 1 j ∈ I (15)

∑
j∈I

∑
S∈6(j)

yjS ≤ p (16)

∑n
i�1

∑n
j�1

∑
S∈6(j):
(i′,k)∈S
ri′ j′ ≤rij

yj
′
S + ∑

S∈6(j):
(i′,k−1)∈S
ri′ j′≥rij

yj
′
S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≤ n2 k ∈ K, k �� 1 (17)

yjS ∈ {0, 1} S ∈ 6(j), j ∈ I.

(18)

The objective function (12) accounts for the sorted
weighted cost of any feasible solution. Constraints (13)
ensure that each client appears in exactly one set S.
Constraints (14) ensure that each position is taken
by exactly one client appearing in one set S. Con-
straints (15) guarantees that each facility j serves at
most one set S of clients. Inequality (16) states that at
most p facilities will be opened. By the following family
of inequalities (17), we enforce the correct sorting of
the costs in any feasible solution. Finally, the variables
are binary.
One can relateMP andWOC. First, remark that, for

a given facility j, there is at most one cost cij that
occupies a given position k. Hence, the following
constraints are valid for WOC:∑

i∈I
xkij ≤ yj, j ∈ I, k ∈ K. (19)

Let WOC+ denote the formulation given by (2)–(8)
and (19) and consider the Dantzig–Wolfe reformu-
lation ofWOC+ in which constraints (5), (19), and (8)
constitute the subproblem. The subproblem can be
decomposed by facility.
On the one hand, the feasible points of the sub-

problem of a facility j correspond one to one to the sets
S ∈ 3(I × K). Hence, this Dantzig–Wolfe reformula-
tion of WOC+ is given by the master problem in
which we consider variables yj

S for all S ∈ 3(I × K)
(instead of only S ∈ 6(j)). More precisely, the vari-
ables ofWOC+ are related to the variables y j

S through
the following two equations:

xkij �
∑

S∈3(I×K):(i,k)∈S
y j
S i, j ∈ I, k ∈ K

and

yj �
∑

S∈3(I×K)
y j
S j ∈ I.

Moreover, constraints (13) correspond to constraints
(3), constraints (14) to (4), constraints (16) to (6), and
constraints (17) to (7). Finally, constraints (15) consti-
tute the “convexity” constraints for the subproblems.
On the other hand, it is easy to see that the poly-

hedron of each subproblem, defined by constraints (5)
and (19) together with xkij ≥ 0 and yj ≤ 1, is integer.
This implies that the linear relaxations of WOC+ and
MP in which all sets S ∈ 3(I × K) are considered
provide the same bound. By restricting the subsets
S to be considered for each facility j to belong to 6(j),
our formulation MP provides, thus, a stronger model.
The computational experiments presented in Section 4.3
show that there exist instances for which the linear
relaxation of MP provides a strictly better (higher)
lower bound than the linear relaxation of WOC.

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
4 INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS

FormulationMP can be strengthened by adding valid
inequalities borrowed from WOC. Indeed, one can
translate valid inequalities (9) in terms of the yjS vari-
ables so that they can be used in the set partition
formulation of DOMP. The translation of (9) results in∑

S∈6(j):
(i′,k)∈S
ri′ j′ ≤rij

yj
′
S + ∑

S∈6(j):
(i′,k−1)∈S
ri′ j′ ≥rij

yj
′
S ≤ 1, i, j ∈ I, k ∈ K, k �� 1.

(20)

2.3. Column Generation to Solve the Linear
Relaxation of MP (LRMP)

Because the number of variables in MP is too large to
be handled directly, in this section, we describe a
column generation approach to solve it.

Let (α, β, γ, δ, ε) be the dual variables associated,
respectively, to constraints (13)–(17). The dual problem
DP of LRMP is

(DP)max
∑
i∈I

αi +
∑
k∈K

βk −
∑
j∈I

γj − pδ − ∑
k∈K:
k ��1

n2εk

(21)

s.t.
∑
i∈I:(i,·)∈S

αi +
∑
k∈K:(·,k)∈S

βk − γj − δ

−∑
i′∈I

∑
j′∈I

∑
(i,k)∈S:
ri′ j′ ≥rij
k ��1

εk +
∑

(i,k)∈S:
ri′ j′ ≤rij
k ��n

εk+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≤ c jS

j ∈ I,S ∈ 6(j)
(22)

δ, γj, εk ≥ 0 j ∈ I, k ∈ K, k �� 1. (23)

To apply the column generation procedure, let us
assume thatwe are given a set of columns that define a
restricted master problem and denote its linear re-
laxation by ReLRMP. This problem is solved to op-
timality, and (α∗, β∗, γ∗, δ∗, ε∗) represents its optimal
dual solution. See Example 1. The reduced cost, c jS, of
column yj

S, namely c jS � c jS − z j
S, is given by

c jS � c jS + γ∗
j + δ∗ +∑

i′∈I

∑
j′∈I

∑
(i,k)∈S:
ri′ j′ ≥rij
k ��1

ε∗k +
∑

(i,k)∈S:
ri′ j′≤rij
k ��n

ε∗k+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− ∑

i∈I:(i,·)∈S
α∗
i −

∑
k∈K:(·,k)∈S

β∗k. (24)

If c jS ≥ 0 for all j, S ∈ 6(j), the current solution of ReLRMP
is also optimal for the LRMP, and the column generation
procedure stops.

Otherwise, one has identified one (some) new col-
umn(s) to be added to the current reduced master
problem to proceed further. In each iteration, ReLRMP
and its reduced costs provide lower and upper bounds
for the LRMP. Indeed it holds that (Desrosiers and
Lübecke 2005)

zReLRMP + p · min
j∈I,S∈6(j)

c jS ≤ zLRMP ≤ zReLRMP, (25)

zReLRMP +
∑
j∈I

min
S∈6(j)

c jS ≤ zLRMP ≤ zReLRMP, (26)

where zReLRMP and zLRMP denote the optimal value of
ReLRMP and LRMP, respectively.

Example 1. Consider the following vector λ � (4, 2, 1),
cost matrix C, and precedence matrix R:

C �
1 3 6
3 1 8
6 8 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, R �

1 4 6
5 2 8
7 9 3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠.

For n � 3, there are 33 different sets of couples (i, k)
in 6.

S1 � {(1, 1)}
S2 � {(1, 2)}
S3 � {(1, 3)}
S4 � {(2, 1)}
S5 � {(2, 2)}
S6 � {(2, 3)}
S7 � {(3, 1)}
S8 � {(3, 2)}
S9 � {(3, 3)}
S10 � {(1, 1), (2, 2)}
S11 � {(1, 1), (2, 3)}
S12 � {(1, 1), (3, 2)}
S13 � {(1, 1), (3, 3)}
S14 � {(1, 2), (2, 1)}
S15 � {(1, 2), (2, 3)}
S16 � {(1, 2), (3, 1)}
S17 � {(1, 2), (3, 3)}

S18 � {(1, 3), (2, 1)}
S19 � {(1, 3), (2, 2)}
S20 � {(1, 3), (3, 1)}
S21 � {(1, 3), (3, 2)}
S22 � {(2, 1), (3, 2)}
S23 � {(2, 1), (3, 3)}
S24 � {(2, 2), (3, 1)}
S25 � {(2, 2), (3, 3)}
S26 � {(2, 3), (3, 1)}
S27 � {(2, 3), (3, 2)}
S28 � {(1, 1), (2, 2), (3, 3)}
S29 � {(1, 1), (2, 3), (3, 2)}
S30 � {(1, 2), (2, 1), (3, 3)}
S31 � {(1, 2), (2, 3), (3, 1)}
S32 � {(1, 3), (2, 1), (3, 2)}
S33 � {(1, 3), (2, 1), (3, 2)}.

The sets 6(j) are the following:

6(1) � {S1,S2,S3, S4, S5, S6, S7,S8,S9,S10,S11,S12,
S13,S15, S17, S22, S23, S25, S28},

6(2) � {S1,S2,S3, S4, S5, S6, S7,S8,S9,S12,S13,S14,
S17,S18, S19, S22, S23, S25, S30},

6(3) � {S1,S2,S3, S4, S5, S6, S7,S8,S9,S10,S11,S15,
S16,S20, S21, S24, S26, S27, S31}.

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS 5

We consider as initial pool of columns the variables
y118 and y38. With this set of variables, the ReLRMP is

(ReLRMP)min+2y25 + 10y113
s.t +y113 ≥ 1 i � 1

+y25 ≥ 1 i � 2

+y113 ≥ 1 i � 3

+y113 ≥ 1 k � 1

+y25 ≥ 1 k � 2

+y113 ≥ 1 k � 3

−y113 ≥ −1 j � 1

−y25 ≥ −1 j � 2
≥ −1 j � 3

−y25 −y113 ≥ −2
−8y25 −y113 ≥ −9 k � 2

−2y25 −3y113 ≥ −9 k � 3
y ≥ 0.

Actually, we are interested in its dual problem:

(DP)max +α1 +α2 +α3 +β1 +β2 +β3 −γ1 −γ2 −γ3

−2δ −9ε2 −9ε3
s.t. +α2 +β2 −γ2 −δ −8ε2 −2ε3 ≤ 2 y25

()
+α1 +α3 +β1 +β3 −γ1−δ −ε2 −3ε3 ≤ 10

y113
()

α, β, γ, δ, ε ≥ 0.

Solving (DP), the solution is α2 � 2, β3 � 10, α1 � α3 �
β1 � β2 � δ � ε2 � ε3 � 0 and the value of the objective
function is f � 12.

2.4. Solving the Pricing Subproblem
Although any column y j

S with negative reduced cost
may be added to ReLRMP, we follow a strategy that
identifies the most negative reduced cost for each
facility j. This approach may give rise to several
candidate columns (multiple pricing; see Chvátal
1983), which is advantageous for this procedure.

To do that, for each facility j ∈ I, we solve a sub-
problem to find the column y j

S, S ∈ 6(j), with mini-
mum reduced cost. This set Smust be such that there
is at most one couple (i, ·) for each client i and one
couple (·, k) for each position k. Furthermore, the set S
must enjoy that the allocation costs if its couples are
compatible. We solve this problem by the following
dynamic programming algorithm.

Let dkij be the contribution of the pair (i, k) to the
reduced cost of any column yj

S such that (i, k) ∈ S.
Depending on the values of k, dkij is given by

dkij �

λkcij +
∑
i′∈I

∑
j′∈I:

ri′ j′≤rij

εk+1 − αi − βk if k � 1,

λkcij +
∑
i′∈I

∑n
j′∈I:

ri′ j′≥rij

εk +
∑
i′∈I

∑
j′∈I:

ri′ j′ ≤rij

εk+1 − αi − βk

if k � 2, . . . ,n − 1,
λkcij +

∑
i′∈I

∑
j′∈I:

ri′ j′≥rij

εk − αi − βk, if k � n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(27)

Then, for a facility j, the problem of finding the var-
iable ykS with minimum reduced costs can be formu-
lated as

min
S∈6(j)

c jS � γ∗
j + δ∗ + ∑

(i,k)∈S
dkij. (28)

Now, for each facility j, we define a matrix Dj as
follows:

Dj �

d1i1j d2i1j · · · dni1j
d1i2j

..

. . .
.

d1inj dninj

⎛⎜⎜⎝

⎞⎟⎟⎠
, (29)

where i1, i2, . . . , in is a permutation of the indices i �
1, . . . ,n such that ci1j ≤ ci2j ≤ · · · ≤ cinj.

Example 2 (Continuing from Example 1). We illustrate
the procedure that computes the elements dkij for all
i, k � 1, . . . ,n of the matrix D1 (j = 1).

d111 � λ1c11 + r11ε2 − α1 − β1 � 4

d211 � λ2c11 + n2 − r11 + 1
()

ε2 + r11ε3 − α1 − β2 � 2

d311 � λ3c11 + + n2 − r11 + 1
()

ε3 − α1 − β3 � −9
d121 � λ1c21 + r21ε2 − α2 − β1 � 10

d221 � λ2c21 + n2 − r21 + 1
()

ε2 + r21ε3 − α2 − β2 � 4

d321 � λ3c21 + + n2 − r21 + 1
()

ε3 − α2 − β3 � −9
d131 � λ1c31 + r31ε2 − α3 − β1 � 24

d231 � λ2c31 + n2 − r31 + 1
()

ε2 + r21ε3 − α3 − β2 � 12

d331 � λ3c31 + + n2 − r31 + 1
()

ε3 − α3 − β3 � −4

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
6 INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS

Because r11 < r21 < r31, the valid permutation is (1, 2, 3).
This implies that

D1 �
4 2 −9
10 4 −9
24 12 −4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ i � 1
i � 2
i � 3.

By usingDj, we obtain that a set Sbelongs to6(j) if and
only if every (i1, k1) and (i2, k2) ∈ S such that i1 < i2 :
k1 < k2.

Our dynamic programming algorithm to obtain the
minimum reduced cost for each j ∈ J builds upon this
observation by constructing a solution to a reduced
version of (28) in which only the first il clients and the
first k positions are considered.

For each couple (il, k), we define a function

gj(il, k) � min
{
c jS : S ∈ 6 j

()
and for all

i′l , k
′() ∈ S : i′l ≤ il and k′ ≤ k

}
(30)

and we denote an optimal solution of this restricted
optimization problem by Sj(il, k).

Hence, the optimal value of problem (28) is equal to
gj(in,n) + δ+ γj and a corresponding optimal solution
by Sj(in,n).

Our recursive procedure computes gj(il, k) and
Sj(il, k) for increasing values of l and k and exploits the
following feasibility conditions on S:

i. For each client i (position k), at most one couple
containing i (position k) belongs to S.

ii. If (il1 , k1) and (il2 , k2) ∈ S and k1 < k2, then ril1 j < ril2 j.
More precisely, if (il, k) belongs to Sj(il, k), then, from

(i), it follows that gj(il, k) � gj(il−1, k − 1) + dkilj. Other-
wise, Sj(il, k)may contain a couple (il, k′)with k′ ≤ k − 1
or a couple (il′ , k) with l′ ≤ l − 1 but not both; other-
wise, condition (ii) would be violated. Hence, in this
case, gj(il, k) � min{gj(il−1, k − 1), gj(il, k − 1), gj(il−1, k)}.
Combining the two cases, we obtain the following
recurrence relation for l, k � 2, . . . , n:

gj(il, k) � min{gj(il−1, k − 1) + dkilj, g
j(il−1, k − 1),

gj(il, k − 1), gj(il−1, k)}. (31)

Algorithm 1 (Pricing Subproblem Algorithm)
1: gj(i1, 1) � min{0, d1i1j};
2: if gj(i1, 1) � d1i1j < 0, then
3: Sj(i1, 1) � {(i1, 1)};
4: else
5: Sj(i1, 1) � ∅;
6: end if
7: for k � 2, . . . ,n, do
8: gj(i1, k) � min{dki1j, gj(i1, k − 1)};
9: if gj(i1, k) � gj(i1, k − 1), then

10: Sj(i1, k) � Sj(i1, k − 1);
11: else
12: Sj(i1, k) � {(i1, k)};

13: end if
14: end for
15: for l � 2, . . . ,n, do
16: gj(il, 1) � min{d1il j, gj(il−1, 1)};
17: if gj(il, 1) � gj(il−1, 1), then
18: Sj(il, 1) � Sj(il−1, k);
19: else
20: Sj(il, 1) � {(il, 1)};
21: end if
22: end for
23: for k, l � 2, . . . ,n, do
24: gj(il, k) � min{gj(il−1, k − 1) + dkilj, g

j(il−1, k − 1),
gj(il, k − 1), gj(il−1, k)};

25: if gj(il, k) � gj(il−1, k − 1), then
26: Sj(il, k) � Sj(il−1, k − 1);
27: else if gj(il, k) � gj(il, k − 1), then
28: Sj(il, k) � Sj(il, k − 1);
29: else if gj(il, k) � gj(il−1, k), then
30: Sj(il, k) � Sj(il−1, k);
31: else
32: Sj(il, k) � Sj(il−1, k − 1) ∪ {(il, k)};
33: end if
34: end for

Obviously, if, at the end of the procedure, gj(in,n) +
δ + γj is negative, the variable yj

Sj(in,n) is a good can-
didate to be chosen in the next iteration of the column-
generation scheme.
If we solve this problem for all j, we get c jR �minS c

j
S,

and if c jR < 0, we can activate (at least) yj
R. Next, we

solve a new ReLRMP with this (these) new activated
variable(s).

Remark 1. Computing each matrix Dj can be done in
O(n2). Next, obtaining gj(in,n) requires the evaluation
of the function gj(i, k) for all i ∈ I and k ∈ K. According
to the algorithm, the evaluation of each gj(i, k) is done in
constant time. Solving the pricing subproblem amounts
to evaluating gj(in,n) for all j ∈ I. Therefore, the entire
pricing subproblem can be solved in O(n3) time.

Example 3 (Continuing from Example 2). We show the
computation of the gj(in,n) and Sj(in,n) for j � 1.

g1(i1, 1) � min{0, 4} � 0, S1(i1, 1) � ∅
g1(i1, 2) � min{2, 0} � 0, S1(i1, 2) � ∅
g1(i1, 3) � min{−9, 0} � −9,S1(i1, 3) � {(1, 3)}
g1(i2, 1) � min{10, 0} � 0, S1(i2, 1) � ∅
g1(i3, 1) � min{24, 0} � 0, S1(i3, 1) � ∅
g1(i2, 2) � min{0 + 4, 0, 0, 0}, S1(i2, 2) � ∅
g1(i3, 2) � min{0 + 12, 0, 0, 0}, S1(i3, 2) � ∅
g1(i2, 3) � min{0 − 9, 0,−9, 0},S1(i2, 3) � {(1, 3)}
g1(i3, 3) � min{0 − 4, 0,−9, 0},S1(i3, 3) � {(1, 3)}

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS 7

Wehave obtained g1(i3, 3) � −9, and S1(i3, 3) � S3 is the
potential set to be used because its reduced cost is neg-
ative. The corresponding reduced cost c13 � g1(i3,3)+
δ+γ1 �−9+0+0�−9< 0. Hence, we active variable y13.

Next, the process continues with the following
facilities, that is, j � 2, 3. In this example, the optimal
solution can be certified after four complete iterations
of the preceding process.

2.5. Dealing with Infeasibility
One important issue when implementing a column-
generation procedure to solve a linear optimization
problem is how to deal with infeasibility. This is es-
pecially crucial if the procedure is used within a
branch-and-bound scheme to solve the linear relax-
ation of the problem at every node of the branching
tree. To handle this, we resort to the so-called Farkas
pricing. This method was used previously, to the best
of our knowledge, in Günlük et al. (2005) and Ceselli
et al. (2008). The term “Farkas pricing”was coined in
Gamrath (2010).

According to Farkas’ lemma (Farkas 1894), a re-
duced master problem is infeasible if its associated
dual problem is unbounded. Thus, to recover feasi-
bility in the ReLRMP,we have to revoke the certificate
of unboundedness in the dual problem. This can be
done by adding constraints to it. Because we are only
interested in recovering feasibility in ReLRMP, one
can proceed in the same way as for the usual pricing
but with null coefficients in the objective function of
the primal. In this way, the Farkas dual problem is

max
∑
i∈I

αi +
∑
k∈K

βk −
∑
j∈I

γj − pδ − ∑
k∈K:
k ��1

n2εk (32)

s.t.
∑
i∈I:(i,·)∈S

αi +
∑n
k∈K:(·,k)∈S

βk − γj − δ

−∑
i′∈I

∑
j′∈I

∑
(i,k)∈S:
ri′ j′ ≥rij
k ��1

εk +
∑

(i,k)∈S:
ri′ j′≤rij
k ��n

εk+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ≤ 0 j ∈ I,S ∈ 6(j)

(33)
δ, γjεk ≥ 0 j ∈ I, k ∈ K,

k �� 1. (34)

To identify new variables that make the reducedmaster
problem feasible, we use our dynamic programming ap-
proach inwhichwe replace the column costs c jS by zeros.

Farkas pricing is an important element in our ap-
proach because it allows starting the column generation
algorithm with an empty pool of columns although this
is not advisable. Furthermore, Farkas pricing is crucial
in the branching phase to recover feasibility (whenever

possible) in those nodes of the branching tree where it
is lost after fixing variables.

3. A Branch-Price-and-Cut Implementation
In this section, we precise several components of the
implementation of our set-partitioning formulation
based on a column generation approach. B&P&C is a
branch-and-cut scheme that solves the linear relax-
ation at each node of the branching tree with the
column generation algorithm previously described
and may apply cuts to improve the obtained lower
bound. (The reader is referred to Doulabi et al. (2016)
for another recent implementation of a B&P&C.)
Unless otherwise specified, to calibrate the best

choice of the different parameters used in our B&P&C,
we have performed a preliminary computational study
based on a set of 60 instances with sizes n � 20, 30 and
with a time limit of 1,800 seconds. Those are the small-
est instances that we eventually use in Section 4.

3.1. Upper Bound for the Master Problem: A GRASP
Heuristic and an Initialization Stage

A heuristic algorithm that generates a good feasible
solution for MP provides a promising pool of initial
columns as well as a good upper bound.
GRASP (Feo and Resende 1989, 1995) is a well-

known heuristic technique that usually exhibits good
performance in short computing time. In our case, it
consists of a multistart greedy algorithm to construct a
set of p facilities from a randomly generated set of
facilities with smaller cardinality. Following Puerto
et al. (2014), we have chosen, in a greedy manner, an
initial set of �p/2 facilities. Next, we improve this
initial solution by performing a fixed number of it-
erations of a local search procedure.
The greedy algorithm adds iteratively a new facility

to the current set of open facilities, choosing the one
with themaximum improvement of the objective value.
The local search consists of an interchange heuristic
between open and closed facilities. The pseudocode of
the GRASP used to solve the problem is described in
Algorithm 2.

Algorithm 2 (GRASP for DOMP)
1: Input(n, p,C, λ,n1, n2, q);
2: for n1 replications, do
3: PartialSolution ← ConstructRandomizedPartial-

Solution(q);
4: Solution ← ConstructGreedySolution(Partial-

Solution);
5: for n2 iterations, do
6: Solution ← LocalSearch(Solution);
7: BestSolution ← UpdateSolution(Solution, Best-

Solution);
8: end for
9: end for

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
8 INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS

First of all, we would like to point out the remarkable
behavior of the GRASP heuristic for this problem.
To illustrate the appropriateness of our heuristic, we
have solved to optimality a number of instances of the
problem using the mixed integer programming (MIP)
formulation to be compared with those given by our
GRASP. In all instances, up to a size of n � 400, the
solution provided by GRASP is always as good as the
one obtained by the any of ourMIP formulations with
a CPU time limit of 7,200 seconds; see Section 4.

Moreover, it is not only advisable to use the GRASP
heuristic because it provides a very good upper bound,
thus, helping the exploration of the searching tree by
pruningmany branches of the branch-and-bound tree,
but in addition, the construction phase of the heuristic
also provides a very promising pool of initial columns
for the B&P&C, in combination with the technique
described in the following.

Because we are solving the LRMP without gener-
ating its entire set of variables, using the primal sim-
plex algorithm, the goal of the initialization phase is to
find an initial set of columns that allows solving theMP
by performing a small number of iterations in the
column generation routine. We create variables using
a modification of the local search routine of the GRASP
algorithm. Every time that we find a promising fea-
sible solution in the heuristic, we create the vari-
ables that define that solution (CreateSetVariables(J)).
Algorithm 3 presents the pseudocode of this process.

Function CreateSetVariables(J) determines the costs
involved in the solution, that is, the minimum for each
client among the open facilities. Then those costs are
ordered to determine the position of each client. Once
we know the couples (i, k) assigned for each open
facility, the corresponding variables are added to the
pool.

Example 4 (Continuing from Example 1). We illustrate
the use of the function CreateSetVariables(J) with the
following set J � {1, 3} (open facilities). The allocation
costs for this set J of open facilities are c11 � 1, c21 � 3,
c33 � 1. According to R, the ranks of these costs are
r11 � 1 < r33 � 3 < r21 � 5. Thus,we get the couples (1, 1),
(3, 2) and (2, 3). This means that client 1 goes to facil-
ity 1 in position 1, client 3 goes to facility 3 in position 2,
and client 2 goes to facility 1 in position 3. Therefore,
the variables y1{(1,1),(2,3)} and y3{(3,2)} are added to the pool.

Algorithm 3 (Initial Columns)
1: Input(|J| � p);
2: z̄ � z(J); CreateSetVariables(J);
3: for n2 iterations, j1 ∈ J, j2 ∈ J̄, do
4: if z((J \ {j1}) ∪ {j2}) < z̄, then
5: z̄ � z((J \ {j1}) ∪ {j2}); J � (J \ {j1}) ∪ {j2};

CreateSetVariables(J);
6: end if
7: end for

To test the usefulness of GRASP in solving prob-
lem instances, Table 1 reports results for the 60 in-
stances of sizes n � 20, 30, enabling or not the use of
the GRASP. It shows average results of CPU time
(Time(s)), percentage gap at termination, i.e., 100(zUB −
zLB)/zLB (Gap(%)), and number of unsolved problems
(in parentheses), number of nodes |Nodes|, and num-
ber of variables (|Vars|).
According to Table 1, it is clearly advisable to use

the upper bound provided by the GRASP heuristic: it
reduces the number of nodes, thus improving the size
of the branch-and-bound tree.
In Table 2, the same information as in Table 1 is

reported but only for the instances solved to opti-
mality within the time limit. One can observe from
this table that enabling the use of GRASP reduces the
CPU time and number of nodes of the B&B tree and, at
the same time, reduces the overall number of vari-
ables required by the B&P&C. In addition, by using
the GRASP heuristic, B&P&C is able to solve six more
instances. For those instances for which B&P&C does
not certify optimality, GRASP provides an upper
bound that leads to an average gap of 0.89%. Finally,
without the use of GRASP, in many cases, no feasible
solutions are foundwithin the time limit, and thus, no
percentage gap can be reported.
Our results show that, by using the GRASP heu-

ristic, 2.03% of the final number of variables are
generated when applying Algorithm 3. The combi-
nation of the incumbent solution (given by GRASP)
and that initial pool of variables leads to solving the
considered instances faster, requiring a fewer number
of nodes and variables to certify optimality.
Figure 1 reports the performance profile of GAP

versus number of solved instances within a time limit
of 1,800 seconds for the 60 instances with sizes n �
20, 30. The dashed line reports results using GRASP
and the solid one without it. It is interesting to point
out that, when GRASP is enabled, the B&P&C is
able to solve to optimality 30 instances, and the GAP

Table 2. CPU Time, Number of Nodes, and Number of
Variables with and without GRASP Heuristic for n � 20, 30

GRASP Time(s) |Nodes| |Vars|
Disabled 386.19 272 10,962
Enabled 147.77 79 6,062

Note. Summary of solved instances.

Table 1. CPU Time, Number of Nodes, and Number of
Variables with and without GRASP Heuristic for n � 20, 30

GRASP Time(s) Gap(%) |Nodes| |Vars|
Disabled 1,107.21 — (36) 158 12,850
Enabled 965.31 0.89 (30) 88 9,907

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS 9

of the remaining never goes beyond 6.43%. On the
other hand, if GRASP is disabled, then B&P&C solves
only 24 instances. In addition, it is capable obtaining a
feasible solution for only two more instances, whereas,
in the remaining 34 instances, the gap is greater than
100% (no feasible solution is found).

3.2. Stabilization
When using a column generation procedure, the vector
of dual variables may be quite different from one it-
eration to the next, resulting in a slow convergence. For
this reason, the stabilization is sometimes a critical
step to reduce the number of variables and iterations
needed to solve each reduced master problem (du
Merle et al. 1999). We follow the stabilization pro-
cedure of Pessoa et al. (2010), which depends on only
one parameter. The idea consists of using a vector of
dual variables, which is a convex combination of the
previous vector and the current solution of the dual
problem.

Let π � (α, β, γ, δ, ε) be a generic vector of dual
multipliers, π be the best known vector of dual mul-
tipliers (found so far), and πReMP be the current so-
lution of the dual problem. Let c jS(π) be the reduced
cost of yj

S computedwith the dual variableπ and LB(π)
the lower bound provided by the same vector of dual
multipliers, namelyπ. Finally, let zD(π) be the value of
the dual objective function of ReLRMP for the dual
vector π; see (25). The stabilization algorithm that
we have implemented is described by the following
pseudocode:

Algorithm 4 (Stabilization in ReLRMP)
1: Δ � Δinit; π � 0; LB(π) � 0; GAP � 1;
2: while GAP > ε, do

3: Solve ReLRMP, obtaining zReLRMP and πReLRMP;
πst � ΔπReLRMP + (1 − Δ)π;

4: for j � 1, . . . , n, do
5: Solve the pricing using πst, obtaining S;
6: if c jS(πReLRMP) < 0, then add variable yj

S; end if
7: end for
8: LB(πst) � z(πt

st) +
∑

S,j:y j
Sadded

c jS(πst);

9: if at least one variable was added, then
10: if LB(πst) > LB(π), then
11: π � πst; LB(π) � LB(πst);
12: end if
13: else
14: π � πst; LB(π) � LB(πst);
15: end if
16: GAP � zReLRMP−LB(π)

zReLRMP
;

17: if GAP < 1 − Δ, then Δ � 1 − GAP; end if
18: end while

In words, the algorithm performs a while loop in
which, in each iteration, it makes a convex combi-
nation of the current vector of dualmultipliers and the
best vector of multipliers found so far. This loop ends
whenever both vectors of multipliers are close enough
based on the gap between the incumbent lower bound
and the actual value of the reduced master problem. It
is important to realize that the coefficient (importance),
Δ, given in the convex combination to πReLRMP (the
current solution of ReLRMP) increases with the
number of iterations of the algorithm because Δ � 1 −
GAP and GAP decreases with the number of itera-
tions. Eventually, in the very last iterations of the
stabilization algorithm, we use the actual vector of
dual multipliers because πst ≈ πReLRMP.
To check the efficiency of the stabilization and to

determine the best value for parameter Δinit, LRMP
has been solved to optimality for 270 instances from
n � 20 to n � 100. In our implementation, we have
chosen Δ � 0.4 based on the computational study
shown in Figure 2. As one can observe in this figure,
the best performance profile is obtained by Δ � 0.4
(dash-dotted line) because it is the configuration that
solves the instances in less time. It is worth men-
tioning that LRMP can be solved in one third of the
time required for solving the problem without sta-
bilization. Detailed results of the linear relaxation for
Δ � 0.4 are reported in Section 4.2.
We report in Figure 3 the evolution of the lower and

upper boundswith respect to number of iterations for
a single instance. Stabilization results in a better be-
havior: the dual bound is not infinite at iteration 0,
and it does not improve for some iterations. The
reason is because we start with a feasible solution of
the problem.
The control over the dual variables significantly

improves the necessary number of iterations and the

Figure 1. (Color online) Performance Profile Graph with
GRASP Enabled or Disabled after 1,800 Seconds, GAP/#
of instances

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
10 INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS

number of variables used to certify optimality. Note
that this improvement becomes more important when
MP is solved using a branch-and-bound procedure
because the number of variables should be small at
every node.

3.3. Preprocessing
To improve the performance of the algorithm, we use
two different preprocessings to set some variables to
zero. Our approach is based on claims 1 and 2 in
Labbé et al. (2017). The reader may observe that, al-
though those results allow fixing some xkij variables to
zero, this variable fixing can be translated to the new
setting by using the relation (10) between the vari-
ables in formulations WOC and MP.

Therefore, the preceding results imply that those
variables yjS such that (i, k) ∈ S and xk

ij � 0 are not con-
sidered to be added to the ReLRMP. This can be simply

enforced by setting the corresponding dkij � 0 in every
pricing subproblem.

3.4. Branching Strategies
Branching on the original variables is a commonoption
when the master problem involves set-partition con-
straints. See, for instance, Johnson (1989). In spite of
that, we have also considered other branching strat-
egies, such as using the set-partitioning variables or the
Ryan and Foster branching (Ryan and Foster 1981,
Barnhart et al. 1998). However, these two alterna-
tives were discarded because our pricing subproblem
is polynomially solvable when we branch on the origi-
nal variables, whereas using any of the other branching
strategies mentioned makes it 13-hard.
Recall that xkij �∑

S∈6(j):(i,k)∈S y
j
S; thus, away to branch

using a fractional solution can be derived directly from
the integrality conditions on the original variables.

Proposition 1. If xkij ∈ {0, 1} for i, j ∈ I, k ∈ K, then yjS ∈
{0, 1} for j ∈ I,S ∈ 6(j).
Proof. Suppose, on the contrary, there exists a variable
with fractional value yj′

S′ . Because xkij are binary for all
i, j, k (in particular for i1, j′, k1, where (i1, k1) is a pair of
S′), there must be another fractional variable yj′

S′′ such
that (i1, k1) ∈ S′′.
Note that S′′ �� S′ because the column generation

procedure never generates duplicate variables. Hence,
there is a pair (i2, k2) such that either (i2, k2) ∈ S′ or
(i2, k2) ∈ S′′ but not both. Therefore, we obtain the fol-
lowing relationship

1 ≥ ∑
S∈6(j′):
(i1,k1)∈S

y j′
S >

∑
S∈6(j′):
(i2,k2)∈S

y j′
S > 0. (35)

The first inequality comes directly from the formu-
lation. The second inequality is strict because the term

Figure 3. (Color online) Bound’s Behavior at the Root Node in a Particular Instance on Successive Iterations

Figure 2. (Color online) Performance Profile Graph with
Different Combination of Δinit, Time(s)/#solved instances

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS 11

∑
S∈6(j′):(i2,k2)∈S y

j′
S has at least one fractional variable less

than the term
∑

S∈6(j′):(i1,k1)∈S y
j′
S . The third inequality is

strict because of the choice of (i2, k2). Finally, a con-
tradiction is found because xj′

i2k2
is not binary. □

The readermay note that this branching can be seen
as a Special Ordered Set of type 1 (SOS1) branching
(Beale and Tomlin 1970) because at most one of the yj

S
variables can assume the value one.

The way to implement this branching in the pricing
subproblem is to set locally (in the current node) to
zero the yj

S variables that are in conflict with the
condition implied by the branch xkij � 0 or xkij � 1.

In the case xkij � 0, we set yj
S � 0 for all sets S con-

taining couples (i, k) ∈ S. Analogously, in the case
xkij � 1, we set yj′

S � 0 for all sets S containing (i, k) ∈ S
such that j �� j′, (i′, k) ∈ S such that i �� i′ or (i, k′) ∈ S
such that k �� k′.

This condition can be transferred to the pricing sub-
problem modifying the dkij coefficients accordingly.
Specifically, this transformation is done as follows:

• If xkij � 0, then dkij � 0.

• If xkij � 1, then

dkij′ � 0, j′ ∈ I : j′ �� j.

dki′j′ � 0, j′, i′ ∈ I : i′ �� i.

dk
′
ij′ � 0, j′ ∈ I, k′ ∈ K : k′ �� k.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
Moreover, it is also well known that branching

on SOS constraints (original variables) gives rise to
more balanced branching trees (see, e.g., chapter 7 of
Wolsey (1998)) than branching on the variables ofMP.

Among the fractional original variables, one has to
decide which will be the next variable to branch on.
One of the easiest techniques for this choice is to con-
sider the most fractional variable. This is not difficult to
implement, but it is not better than choosing ran-
domly (Achterberg et al. 2005). Alternative techniques
arepseudocost branching (Benichou et al. 1971) or strong
branching (Applegate et al. 1995) although they are
rather costly.

This issue has motivated us to propose another rule
to select the variable on which to branch based on the
improvement of the bounds in each of the new created
nodes. We use the following indices corresponding to
the down and up branches of the variable xkij:

ςk,−ij � λkcij
xkij

and ςk,+ij � λkcij
1 − xkij

. (36)

They account, respectively, for the unitary contri-
bution to the objective function resulting from fixing
the variable xkij either to zero (down branching) or to
one (up branching). Branching down stimulates the
improvement of the lower bound, whereas branching
up helps the problem to find integer solutions.

We have tested several strategies that make use of
the indices, ς, defined.
Strategy 1: argmin{θςk,−ij + (1 − θ)ςk,+ij : 0 < xkij < 1}.
Strategy 2: argmin{min{ςk,−ij , ςk,+ij } : 0 < xkij < 1}.
Strategy 3: argmin{max{ςk,−ij , ςk,+ij } : 0 < xkij < 1}.
Based on our computational experience (see Fig-

ure 4), we have concluded that the best strategy to
choose the following variable to branch on corre-
sponds to strategy 1 with θ � 0.5.
Each node of the branching tree can be fathomed

before it is fully processed comparing lower bounds
as given by (25) and (26) with the current incumbent
solution. This strategy implies reducing the number
of calls to the pricing subproblem and, as a result,
savings in the number of variables added to the re-
stricted master problem.

3.5. Valid Inequalities
Clearly, the addition of valid inequalities (20) to MP
modifies the structure of the master problem, and
thus, the pricing must be modified accordingly. Let
usdenote by ζkij the dual variable associatedwith valid
inequality (20) for indices i, j, k. After some calculation,
one obtains the following expression of the reduced
costs of variable yj

S:

c jS � c jS + γ∗
j + δ∗

+∑
i′∈I

∑
j′∈I

∑
(i,k)∈S:
ri′ j′≥rij
k ��1

(ε∗k + ζk∗i′j′) +
∑

(i,k)∈S:
ri′ j′ ≤rij
k ��n

(
ε∗k+1 + ζ(k+1)∗i′j′

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
− ∑

i∈I:(i,·)∈S

α∗
i −

∑
k∈K:(·,k)∈S

β∗k.

(37)

Furthermore, solving the pricing subproblem tofind a
new column or to certify optimality of the column-
generation algorithm requires adapting the dynamic
programming algorithm that computes the g(il, k)
terms using the new dual multipliers. This implies

Figure 4. (Color online) Performance Profile Graph of
#solved instances Using Different Branching Strategies

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
12 INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS

modifying the Dj matrices. Once again, after some
calculations, the modified dkij elements are now given
by

dkij �

λkcij +
∑
i′∈I

∑
j′∈I:

ri′ j′ ≤rij

(εk+1 + ζk+1i′j′) − αi − βk

if k � 1,
λkcij +

∑
i′∈I

∑
j′∈I:

ri′ j′ ≥rij

(εk + ζki′j′)

+∑
i′∈I

∑
j′∈I:

ri′ j′≤rij

(εk+1 + ζk+1i′j′) − αi − βk

if k � 2, . . . ,n − 1,
λkcij +

∑
i′∈I

∑
j′∈I:

ri′ j′ ≥rij

(εk + ζki′j′) − αi − βk,

if k � n.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(38)

These new elements allow us to apply the adapted
column generation algorithm to solve LRMP, rein-
forced with valid inequalities (20).

To justify the use of the mentioned cuts, we have
done some preliminary computational experiments
with instances of sizes n � 50 and 60. Table 3 compares
the behavior of the standard branch-and-price with-
out cuts, (B&P(MP)), against the strategy with cuts,
B&P&C(MP).

From Table 3, we conclude that it is always better to
add cuts because the final gap is always smaller with
this strategy. This solution scheme has been imple-
mented, and the results are reported in the next section.

4. Computational Experiments
The B&P&C implementation of the formulation MP
has been experimentally compared with the B&C
implementation of the formulation WOC on the in-
stances detailed as follows. The B&P&C algorithm
considered in these experiments is based on the de-
scription in the previous section.

The computer used for these tests has an Intel Core
i7 CPU clocked at 2.8 GHz with 4 GB of RAM. Each
implementation has a maximum of 7,200 seconds
(two hours) to solve each individual instance.
Both implementations are using the SCIP 4.0.1’s

API (see Gamrath et al. (2016)) and both are calling
the LP solver of IBM ILOG CPLEX 12.7.

4.1. Instances
Because no standard libraries of instances for DOMP
are available in public repositories, we generate our
own instances with the pseudorandom number gen-
erator from the C random library. In this work, we
consider that the sets of clients and potential facilities
coincide; thereby we refer to both as points.
We consider 20 sets of 30 instances. Each set has a

different number of points such that n ∈ {20, 30, . . . ,
90, 100, 120, 140, . . . , 280, 300, 400}. For a given n, we
generate one subset of 10 instances for each value of p,
where p ∈ { (n/4)� , (n/3)� , (n/2)� }.
For a given n, we first randomly generate the

Cartesian coordinates of the points in the square
[0, 400]2. Then, we calculate the cost for each pair of
points with the Euclidean distance between the two
related nodes in the square. We round each distance
to the nearest integer to build the cost matrices. We
also fix the values of the matrix diagonal to the smallest
admissible cost to avoid free self service.
Finally, we randomly generate the weight vector λ

such that λk ∈ [n/4,n] for k ∈ K. All these instances,
with n up to 400, are available at https://gom.ulb.ac
.be/gom/wp-content/uploads/2018/12/DOMP
_Repository.zip. Detailed information about the in-
stance generation can be found in Deleplanque et al.
(2018).

4.2. MP vs. WOC Linear Relaxations
We assess experimentally the linear relaxation of MP
by comparing with WOC on all the instances gener-
ated. For these experiments, neither cuts nor pre-
processing have been applied.

Table 3. Numerical Results with and Without Cuts

n � 50 n � 60

p � 12 p � 16 p � 25 p � 15 p � 20 p � 30

B&P Time(s) 7,200.03 7,200.01 7,200.01 7,200.07 7,200.02 7,202.00
(MP) |Vars| 48,648 38,368 21,558 49,990 34,262 24,730

|Nodes| 4,828 11,768 49,523 5,329 12,526 30,305
#unsolved 10 10 10 10 10 10
Gap(%) 6.26 7.57 9.57 8.29 8.97 12.07

B&P&C Time(s) 7,200.39 7,200.49 6,860.93 7,200.08 7,200.77 7,200.20
(MP) |Vars| 14,807 14,977 13,407 17,131 16,691 16,838

|Nodes| 1 6 9 2 1 11
|Cuts| 3,526 3,066 2,709 3,489 4,192 2,864
#unsolved 10 10 9 10 10 10
Gap(%) 2.83 2.89 1.87 5.04 4.52 4.47

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS 13

https://gom.ulb.ac.be/gom/wp-content/uploads/2018/12/DOMP_Repository.zip
https://gom.ulb.ac.be/gom/wp-content/uploads/2018/12/DOMP_Repository.zip
https://gom.ulb.ac.be/gom/wp-content/uploads/2018/12/DOMP_Repository.zip

In Table 4, we report averages of the numerical
results of the linear relaxation for both formulations.
The value GapLP(%) represents the gap percentage
between the optimal integer value z∗ (alternatively,
the best known solution) and the linear relaxation
optimal value z∗LP: GapLP(%) � 100(z∗ − z∗LP)/z∗LP. The
computational times in the column Time(s) are given
in seconds. Table 4 also includes average number of
variables (|Vars|) and required memory (Memory(MB)).
We highlight the small number of variables that
are generated to certify optimality with the column-
generation approach applied to MP, besides the time
and memory saving, which is likewise significant.

As expected, the integrality gap of formulationMP
is smaller than the one of WOC. Moreover, formu-
lation MP also outperforms WOC in the number of
required variables (see Figure 5), which results in
much smaller memory requirements (see Figure 6).
Indeed, the implementation of WOC fails to solve,
already for sizes of n � 100, the linear relaxation of
all instances by lack of RAM memory, whereas, with
the same parameter configuration, formulationMP is
relatively far from experiencing that problem. Figure 6
shows the performance profile of the memory re-
quirement of both formulations. As one can see, MP
outperforms WOC with respect to this factor for all
instance sizes.

4.3. B&P&C (MP) vs. B&C (WOC)
We now compare the B&P&C implementation of MP
with the B&C implementation of WOC. The former
follows the procedure explained in Section 3, and the
latter consists of the WOC formulation with (9) as
valid inequalities.
The results are reported in Table 5. In that table, we

denote by Time(s) the average computational time (in

Table 4. Numerical Results on Linear Relaxation for WOC and MP

(WOC) (MP)

n p GapLP(%) Time(s) |Vars| Memory(MB) GapLP(%) Time(s) |Vars| Memory(MB)
20 10 15.35 0.12 8,020 35 14.78 0.09 450 2
30 15 16.77 0.62 27,030 101 16.16 0.29 1,067 5
40 20 18.22 2.09 64,040 235 17.98 0.74 2,005 10
50 25 15.02 6.25 125,050 451 14.74 1.36 2,922 15
60 30 16.94 12.27 216,060 764 16.69 2.74 4,777 23
70 35 15.97 29.40 343,070 1,214 15.80 4.61 6,327 30
80 40 7.67 47.63 512,080 1,830 7.63 5.63 7,161 34
90 45 7.19 82.19 729,090 2,561 7.15 9.14 8,867 42
100 50 – – 1,000,100 >4,096 7.05 14.18 11,255 54
20 6 9.56 0.14 8,020 35 8.79 0.14 548 3
30 10 11.68 0.68 27,030 101 10.96 0.39 1,257 7
40 13 12.39 2.34 64,040 235 12.08 1.17 2,371 14
50 16 9.65 6.37 125,050 451 9.34 2.09 3,641 21
60 20 11.11 13.30 216,060 764 10.82 4.18 5,652 32
70 23 10.16 35.65 343,070 1,214 9.98 7.54 7,684 44
80 26 8.32 58.14 512,080 1,830 8.11 11.32 9,699 55
90 30 7.08 96.74 729,090 2,561 7.02 17.58 12,185 69
100 33 – – 1,000,100 >4,096 8.01 28.76 15,656 87
20 5 9.53 0.14 8,020 35 8.61 0.16 574 4
30 7 10.61 0.70 27,030 101 9.36 0.59 1,278 9
40 10 10.44 2.51 64,040 235 10.05 1.61 2,536 17
50 12 7.96 7.35 125,050 451 7.54 3.01 3,955 27
60 15 9.74 15.98 216,060 764 9.41 5.56 5,697 36
70 17 8.80 40.78 343,070 1,214 8.50 10.19 7,828 53
80 20 9.53 67.42 512,080 1,830 9.38 17.38 10,740 69
90 22 9.58 128.70 729,090 2,561 9.41 28.66 13,581 86
100 25 – – 1,000,100 >4,096 8.65 44.20 17,084 106

Figure 5. (Color online) Graph of Number of Variables vs.
Size n for WOC and MP

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
14 INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS

seconds) required by eachmethod to obtain an optimal
solution for a given set of 10 instances defined by
number of clients (n) and number of open facilities (p).

With |Vars|, we refer to the average of the numbers
of variables used by MP or WOC. We also denote by
|Nodes| and |Cuts| the average of the number of nodes
explored and the average of the number of cuts used,
respectively, in the corresponding methodology. The
column #unsolved(T/M) in the case of B&C(WOC)
reports the number of unsolved instances out of the
10 in each group. It distinguishes between those in-
stances not solved by exceeding the maximum running

time (T) or the memory limits (M). Observe that, in the
similar column within the blocks B&P&C(MP), no
distinction is shown because the memory limit is
never reached, and instances may be not solved only
because of the time limitation. Finally,we also include
the gap at termination as Gap(%) � 100(zUB − zLB)/zLB,
where zLB and zUB are the lower and upper bound,
respectively.
Analyzing further the results in Table 5, we con-

clude that, on average, B&C(WOC) uses less variables
than B&P&C(MP). This allows us to solve larger-sized
instances thatwere not affordable for the originalWOC.
We also observe that the number of required cuts for
B&P&C(MP) is smaller than for B&C(WOC). This
could be explained by the tightness of B&P&C(MP)
with respect to B&C(WOC). After adding cuts,
B&P&C(MP) is able to solve the problemwith a smaller
branch-and-bound tree. The number of instances solved
to optimality for small-sized instances up to n � 40 is
slightly better for B&C(WOC). As the size increases,
this number is similar in both cases. Gaps at termi-
nation after 7,200 seconds are always smaller than 8%
for B&C(WOC) and smaller than 6% for B&P&C(MP),
the latter being clearly better from instances of n � 70.
Because B&C(WOC) is not able to handle any instance
with n � 100 (reporting out of memory flags), we con-
tinue our study in Table 6 without this formulation.
Table 6 contains the results within the time limit of

two hours for bigger instances of DOMP. This table
has the same layout as Table 5 except that we replace

Table 5. Numerical Results for B&C(WOC) and B&P&C(MP)

B&C(WOC) B&P&C(MP)

n p Time(s) |Vars| |Nodes| |Cuts| #unsolved(T/M) Gap(%) Time(s) |Vars| |Nodes| |Cuts| #unsolved Gap(%)
20 10 4.48 4,211 38 689 0/0 0.00 58.70 4,272 111 373 0 0.00
30 15 131.89 13,952 19,197 2,519 0/0 0.00 3,670.21 16,369 392 1,078 3 0.45
40 20 6,202.85 32,820 605,812 4,727 8/0 2.54 6,751.27 14,591 41 1,819 9 3.33
50 25 6,575.59 63,776 355,560 10,131 9/0 1.35 6,860.93 13,407 9 2,709 9 1.87
60 30 6,707.38 109,804 85,723 15,676 8/2 1.82 7,200.20 16,838 11 2,864 10 4.47
70 35 2,474.98 173,955 835 19,238 2/8 7.72 7,200.31 17,758 2 4,150 10 4.95
80 40 3,428.13 259,186 1 12,406 0/10 3.38 7,201.36 18,902 2 4,680 10 2.13
90 45 6,243.49 368,560 1 12,157 7/3 4.24 7,200.38 20,028 7 4,127 10 2.37
20 6 11.50 5,706 440 1,249 0/0 0.00 952.76 10,959 97 615 0 0.00
30 10 1,578.21 18,245 305,595 3,056 1/0 0.12 6,270.41 17,502 81 1,503 8 1.61
40 13 7,061.36 43,664 628,962 6,559 8/2 2.38 7,200.72 11,186 2 3,073 10 3.69
50 16 7,116.54 85,630 284,028 10,423 9/1 1.14 7,200.49 14,977 6 3,066 10 2.89
60 20 3,306.54 144,983 20,330 19,887 2/8 3.02 7,200.77 16,691 1 4,192 10 4.52
70 23 2,119.13 231,680 1 23,603 0/10 6.20 7,200.97 19,307 2 4,365 10 4.51
80 26 2,886.25 346,926 1 25,187 0/10 5.59 7,201.35 21,675 1 5,449 10 3.69
90 30 5,214.89 488,316 1 32,406 0/10 4.62 7,201.66 24,507 1 6,116 10 3.17
20 5 16.54 6,054 1,215 1,537 0/0 0.00 1,989.43 14,699 97 731 1 0.09
30 7 1,807.41 20,643 198,424 4,789 1/1 0.65 6,840.10 14,934 29 2,093 8 1.85
40 10 7,050.93 48,065 602,685 7,939 7/3 1.68 7,200.90 10,730 1 3,455 10 3.95
50 12 7,200.00 94,784 270,959 12,579 10/0 0.91 7,201.39 14,807 1 3,526 10 2.83
60 15 2,768.88 161,807 1 18,081 0/8 2.90 7,201.08 17,131 2 3,489 10 5.04
70 17 1,842.00 259,406 1 16,115 0/10 6.04 7,201.78 19,454 1 4,649 10 4.51
80 20 2,902.00 383,199 1 27,129 0/10 6.95 7,201.52 25,278 3 4,320 10 4.89
90 22 5,999.16 549,561 1 46,216 0/10 6.82 7,201.75 27,418 1 5,549 10 5.50

Figure 6. (Color online) Graph of Memory Usage (MB) vs.
Size n for WOC and MP

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS 15

column #unsolved by Memory(MB). This new column
shows the average required memory to solve the cor-
responding set of instances. In that table, extensive
computational experiments are reported for instances up
to 400 points. We would like to remark that the increase
of the complexity with respect to the instance sizes of
|Vars|, |Cuts|, Memory(MB), and Gap(%) is moderate
(almost linear), which allows one to handle DOMP
problemsof larger size.Moreover theGap(%) are similar
to those reported in Table 5.

To conclude, the results show that the overall per-
formance of B&P&C(MP) in solving DOMP is system-
atically better than the branch-and-cut formulation
B&C(WOC) for instances of n ≥ 70. In addition, it is
worth noting that B&C(WOC) is not even able to solve
the linear relaxation ofDOMPproblems of sizes n ≥ 100.
This fact shows the usefulness of our new approach.

5. Conclusions
This paper presents a first branch-price-and-cut,
B&P&C(MP), algorithm for solving DOMP. This

approach is based on an extended formulation using
an exponential number of variables coming from a set-
partitioningmodel. Elements in thepartitionsare couples
containing information about a client and its sorted
position in the sorted sequence of allocation costs. To
address the solution of this formulation, we develop a
column generation algorithm, and we prove that the pric-
ing routine is polynomially solvable by a dynamic pro-
gramming algorithm.We embed the column generation
algorithm within a branch-and-price framework. Fur-
thermore, we adapt preprocessing and incorporate fami-
lies of valid inequalities that improve its performance.
Extensive computational results compare the perfor-
mance of our B&P&C(MP) against the most recent
algorithm in the literature for DOMP, B&C(WOC),
showing that, for the largest considered instances,
B&P&C(MP) performs better, and it requires less mem-
ory to upload and run the models. The methodology
presented in this paper is able to solve sized instances
for DOMP that had never been solved in the literature.

Table 6. Numerical Results for B&P&C(MP) for Bigger Instances

n p Time(s) |Vars| |Nodes| |Cuts| Memory(MB) Gap(%)
100 50 7,201.10 23,057 2 5,221 311 2.43
120 60 7,200.54 29,209 1 6,992 424 2.54
140 70 7,202.11 34,222 2 6,805 449 2.87
160 80 7,201.08 41,811 1 8,069 574 3.13
180 90 7,201.24 50,523 1 7,961 656 3.48
200 100 7,201.61 59,931 1 9,050 805 3.96
220 110 7,201.39 57,685 1 11,097 806 4.39
240 120 7,200.94 63,710 1 11,487 874 4.43
260 130 7,201.83 73,143 1 9,772 910 5.05
280 140 7,200.98 83,892 1 9,592 1,037 6.19
300 150 7,201.74 87,444 1 10,811 1,076 6.83
100 33 7,201.10 29,974 2 5,864 562 3.81
120 40 7,201.12 37,204 5 5,433 621 4.80
140 46 7,200.98 48,286 2 7,953 894 4.47
160 53 7,201.55 57,060 3 7,159 926 5.01
180 60 7,203.85 70,077 1 8,997 1,188 5.99
200 66 7,200.55 67,417 1 11,416 1,199 6.16
220 73 7,201.41 71,731 2 9,356 1,073 6.88
240 80 7,202.02 84,466 2 10,093 1,324 9.80
260 86 7,200.74 92,401 1 10,505 1,390 9.54
280 93 7,201.68 105,535 1 13,265 1,728 9.01
300 100 7,200.28 114,427 1 15,595 2,034 9.41
100 25 7,202.69 31,218 1 7,034 801 4.73
120 30 7,200.98 40,074 1 6,818 922 5.91
140 35 7,203.38 49,539 1 8,466 1,162 5.83
160 40 7,201.35 58,464 1 10,688 1,465 7.29
180 45 7,203.43 72,146 1 10,329 1,674 8.70
200 50 7,201.88 62,568 1 10,252 1,364 11.27
220 55 7,203.56 74,359 1 9,985 1,515 10.34
240 60 7,200.19 80,228 1 9,745 1,422 11.57
260 65 7,200.54 99,628 1 7,944 1,346 11.77
280 70 7,203.63 109,544 1 4,187 1,247 11.32
300 75 7,200.79 128,462 1 3,844 1,261 12.26
400 200 86,400.42 158,287 1 9,308 1,183 7.07
400 133 86,401.23 178,265 1 13,652 2,764 11.26
400 100 86,401.11 236,973 1 7,582 3,125 10.29

Note. For instances with n = 400, the time limit was set to 24 hours.

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
16 INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS

Acknowledgments
The authors thank the SCIP team (Gamrath et al. 2016) for the
helpful advice. They also thank the helpful reports from two
anonymous referees that led to improving the quality of the
paper.

References
Achterberg T, Koch T, Martin A (2005) Branching rules revisited.

Oper. Res. Lett. 33(1):42–54.
Applegate D, Bixby R, Chvátal V, Cook W (1995) Finding cuts in the

TSP (a preliminary report). DIMACS Technical Report 95-05,
DIMACS, Rutgers University, New Brunswick, NJ.

Avella P, Sassano A, Vasil’ev I (2006) Computational study of large-
scale p-median problems. Math. Programming 109(1):89–114.

Barnhart C, Johnson E, Nemhauser G, SavelsberghM, Vance P (1998)
Branch-and-price: Column generation for solving huge integer
programs. Oper. Res. 46(3):316–329.

Beale E, Tomlin J (1970) Special facilities in a general mathematical
programming system for non-convex problems using ordered
sets of variables. Lawrence J, ed. Proc. 5th Internat. Conf. Oper. Res.
(Tavistock Publications, London), 447–454.

Benichou M, Gauthier J, Girodet P, Hentges G, Ribiere G, Vincent O
(1971) Experiments in mixed-integer programming. Math. Pro-
gramming 1(1):71–94.

Boland N, Domı́nguez-Marı́n P, Nickel S, Puerto J (2006) Exact
procedures for solving the discrete ordered median problem.
Comput. Oper. Res. 33(11):3270–3300.

Ceselli A, Righini G (2005) A branch-and-price algorithm for the
capacitated p-median problem. Networks 45(3):125–142.

Ceselli A, Liberatore F, Righini G (2008) A computational evaluation
of a general branch-and-price framework for capacitated net-
work location problems. Ann. Oper. Res. 167(1):209–251.

Chvátal V (1983) Linear Programming (W. H. Freeman and Company,
New York).

Contreras I, Dı́az J, Fernández E (2011) Branch and price for large-
scale capacitated hub location problems with single assignment.
INFORMS J. Comput. 23(1):41–55.

Deleplanque S, Labbé M, Ponce D, Puerto J (2018) An extended
version of a branch-price-and-cut procedure for the discrete
orderedmedian problem. Preprint, submitted February 9, https://
arxiv.org/abs/1802.03191.

Desrosiers J, Lübecke M (2005) A primer in column generation.
Desaulniers G, Desrosiers J, Salomon MM, eds. Column Gener-
ation (Springer, Boston), 1–32.

Domı́nguez-Marı́n P, Nickel S, Hansen P, Mladenovic N (2005)
Heuristic procedures for solving the discrete ordered median
problem. Ann. Oper. Res. 136(1):145–173.

Doulabi SHH, Rousseau LM, Pesant G (2016) A constraint-programming-
based branch-and-price-and-cut approach operating room
planning and scheduling. INFORMS J. Comput. 28(3):432–448.

du Merle O, Vial J (2002) Proximal ACCPM, a cutting plane method
for column generation and Lagrangean relaxation: Application
to the p-median problem. Technical report, HEC Genève, Uni-
versité de Genève, Geneva, Switzerland.

du Merle O, Villenueve D, Desrosiers J, Hansen P (1999) Stabilized
column generation. Discrete Math. 194(1–3):229–237.

Farkas G (1894) A Fourier-féle mechanikai elv alkalmazásai. Math-
ematikai és Természettudományi Érstesitö 12:457–472.

Feo TA, Resende MGC (1989) A probabilistic heuristic for a compu-
tationally difficult set covering problem.Oper. Res. Lett. 8(2):67–71.

Feo TA, Resende MGC (1995) Greedy randomized adaptive search
procedures. J. Global Optim. 6(2):109–133.

Fernández E, Pozo MA, Puerto J (2014) Ordered weighted average
combinatorial optimization: Formulations and their properties.
Discrete Appl. Math. 169(31):97–118.

Fernández E, Puerto J, Rodrı́guez-Chı́a AM (2013) On discrete op-
timization with ordering. Ann. Oper. Res. 207(1):83–96.

Fernández E, PozoMA, Puerto J, Scozzari A (2017) Orderedweighted
average optimization in multiobjective spanning tree problems.
Eur. J. Oper. Res. 260(31):886–903.

Gamrath G (2010) Generic branch-cut-and-price. Master’s thesis,
Institut für Mathematik, Technische Universität Berlin, Berlin.

Gamrath G, Fischer T, Gally T, Gleixner AM, Hendel G, Koch T,
Maher SJ, Miltenberger M,Müller B, PfetschME, et al. (2016) The
SCIP optimization suite 3.2. Technical report 15-60, ZIB, Berlin.

GünlükO, Ladányi L, de Vries S (2005) A branch-and-price algorithm
and new test problems for spectrum auctions. Management Sci.
51(3):391–406.

Johnson EL (1989) Modeling and strong linear programs for mixed
integer programming. Wallace S, ed. Algorithms and Model For-
mulations in Mathematical Programming, NATO ASI Series, vol. 51
(Springer, Berlin Heidelberg), 1–43.

Labbé M, Ponce D, Puerto J (2017) A comparative study of formu-
lations and solution methods for the discrete ordered p-median
problem. Comput. Oper. Res. 78:230–242.

Lorena L, Senne E (2004) A column generation approach to capaci-
tated p-median problems. Comput. Oper. Res. 31(6):863–876.

Marı́n A, Nickel S, Velten S (2010) An extended covering model for
flexible discrete and equity location problems. Math. Methods
Oper. Res. 71(1):125–163.

Marı́n A, Nickel S, Puerto J, Velten S (2009) A flexible model and
efficient solution strategies for discrete location problems. Dis-
crete Appl. Math. 157(5):1128–1145.

Nickel S (2001) Discrete orderedWeber problems.Oper. Res. Proc. 2000:
71–76.

Nickel S, Puerto J (1999) A unified approach to network location
problems. Networks 34(4):283–290.

Nickel S, Puerto J (2005) Location Theory: A Unified Approach (Springer,
Berlin, Heidelberg).

Olender P, Ogryczak W (2018) A revised variable neighborhood
search for the discrete orderedmedian problem. Eur. J. Oper. Res.
274(2):445–465.

Perea F, Puerto J (2013) Finding the nucleolus of any n–person co-
operative game by a single linear program. Comput. Oper. Res.
40(10):2308–2313.

Pessoa A, Uchoa E, Aragão MP, Rodrigues R (2010) Exact algo-
rithm over an arctime-indexed formulation for parallel ma-
chine scheduling problems. Math. Programming Comput. 2(3–4):
259–290.

Ponce D, Puerto J, Ricca F, Scozzari A (2018) Mathematical pro-
gramming formulations for the efficient solution of the k-sum
approval voting problem. Comput. Oper. Res. 98:127–136.

Puerto J (2008) A new formulation of the capacitated discrete ordered
median problemwith {0, 1}-assignment. Kalcsics J, Nickel S, eds.
Oper. Res. Proc. 2007 (Springer, Berlin Heidelberg), 165–170.

Puerto J, Fernández F (2000) Geometrical properties of the sym-
metrical single facility location problem. J. Nonlinear Convex Anal.
1(3):321–342.

Puerto J, Rodrı́guez-Chı́a AM (2015) Ordered median location prob-
lems. Laporte G, Nickel S, Saldanha da Gama F, eds. Location
Science (Springer) Heidelberg: 249–288.

Puerto J, Pérez-Brito D, Garcı́a-González CG (2014) A modified
variable neighborhood search for the discrete ordered median
problem. Eur. J. Oper. Res. 234(1):61–76.

Puerto J, Ramos AB, Rodrı́guez-Chı́a AM (2011) Single-allocation
orderedmedian hub location problems. Comput. Oper. Res. 38(2):
559–570.

Puerto J, Ramos AB, Rodrı́guez-Chı́a AM (2013) A specialized branch
& bound & cut for single-allocation ordered median hub loca-
tion problems. Discrete Appl. Math. 161(16–17):2624–2646.

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS 17

https://arxiv.org/abs/1802.03191
https://arxiv.org/abs/1802.03191

Puerto J, Rodrı́guez-Chı́a AM, Tamir A (2009) Minimax regret
single-facility ordered median location problems on networks.
INFORMS J. Comput. 21(1):77–87.

Puerto J, Ramos AB, Rodrı́guez-Chı́a AM, Sánchez-Gil MC (2016)
Ordered median hub location problems with capacity con-
straints. Transportation Res., Part C Emerging Tech. 70:142–156.

Ryan DM, Foster A (1981) An integer programming approach to
scheduling. Wren A, ed. Computer Scheduling of Public Transport:

Urban Passenger Vehicle and Crew Scheduling (North-Holland,
Amsterdam), 269–280.

Senne E, Lorena L, Pereira MA (2005) A branch-and-price approach
to p-median location problems. Comput. Oper. Res. 32(6):1655–1664.

Stanimirovic Z, Kratica J, Dugosija D (2007) Genetic algorithms for
solving the discrete ordered median problem. Eur. J. Oper. Res.
182(3):983–1001.

Wolsey LA (1998) Integer Programming (JohnWiley & Sons, NewYork).

Deleplanque et al.: A Branch-Price-and-Cut Procedure for the DOMP
18 INFORMS Journal on Computing, Articles in Advance, pp. 1–18, © 2020 INFORMS

	A Branch-Price-and-Cut Procedure for the Discrete Ordered Median Problem
	Introduction
	Problem Definition and Formulations
	A Branch-Price-and-Cut Implementation
	Computational Experiments
	Conclusions

